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Abstract 
 

     The aim of this paper was to determine whether fractal processes underlie the dynamics of 
self-esteem and physical self. Twice a day for 512 consecutive days, four adults completed a 
brief inventory measuring six subjective dimensions: global self-esteem, physical self-worth, 
physical condition, sport competence, attractive body, and physical strength. The obtained 
series were submitted to spectral analysis, which allowed their classification as fractional 
Brownian motions. Three fractal analysis methods (Rescaled Range analysis, Dispersional 
analysis, and Scaled Windowed Variance analysis) were then applied on the series. These 
analyses yielded convergent results and evidenced long-range correlation in the series. The 
self-esteem and physical self series appeared as anti-persistent fractional Brownian motions, 
with a mean Hurst exponent of about 0.21. These results reinforce the conception of self-
perception as the emergent product of a dynamical system composed of multiple interacting 
elements.  
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     Self-esteem has classically been considered to be a personality trait, a stable quality that 
characterizes and differentiates individuals across time and situations (Cheek & Hogan, 1983; 
Coopersmith, 1967; Mischel, 1969). A number of authors advocated this conception of self-
esteem, especially in adults, and the observed fluctuations in repeated assessments were 
attributed to meaningless errors in measurement rather than to an inherent instability (Epstein, 
1979). From this point of view, fluctuations had to be removed by averaging to obtain an 
accurate assessment of dispositional self-esteem. Rosenberg (1986), however, suggested the 
presence of meaningful short-term instabilities in self-esteem, tied to specific life events such 
as professional success or failure. Kernis (1993) went further and stated that self-esteem 
variability, defined as the magnitude of fluctuations in contextually based self-esteem, was a 
dispositional quality: People differ in self-esteem level, but also in the extent to which they 
exhibit short-term fluctuations in self-esteem. In a series of studies, Kernis and his 
collaborators showed how self-esteem level and self-esteem variability interact so that 
cognitive, emotional or behavioral reactions to events may be predicted (Greenier, Kernis, 
McNamara, Waschull, Berry, Herlocker & Abend, 1999; Kernis, Cornell, Sun, Berry & 
Harlow, 1993; Kernis, Grannemann & Mathis, 1991; Kernis & Waschull, 1995).  
 
     Typically, Kernis and his collaborators measured self-esteem variability by asking 
participants to rate themselves several times a day for several days and then by using the 
individual standard deviation as an index of self-esteem variability. Unfortunately, this 
approach of focusing only on the magnitude of variability gives quite a poor image of the true 
nature of self-esteem fluctuations. Self-esteem varies over time on a moment-by-moment 
basis, and one may assume that the current assessment, albeit partly determined by recent 
events, is also closely tied to the previous assessment. The successive measures cannot be 
considered as mutually independent (or uncorrelated), and each of them has to be conceived 
of  as embedded in a historical process. A full characterization of variability requires going 
beyond the basic assessment of its magnitude and proceeding to an analysis of its dynamic 
structure (see Slifkin & Newell, 1998).  
 
     This perspective on variability analysis is obviously tied to the dynamical conceptions of 
the self recently emphasized by Nowak, Vallacher, Tesser and Borkowski (2000), Vallacher, 
Nowak, Froehlich and Rockloff (2002) and Marks-Tarlow (1999, 2002). These authors 
consider self-esteem to be the emergent property of a dynamical system and have tried to rise 
above the traditional debate between dispositionalist theories (focused on trait stability) and 
situationalist theories (focused on states cross-situational inconsistency). Self-esteem is 
viewed as a continuous flow beyond contextual, social and cultural factors, and the analysis of 
its historical evolution is essential to completely understand it (Marks-Tarlow, 1999).  
 
     In fact, these dynamical conceptions have a long tradition in self-concept research. James 
(1890) conceived of self-esteem as a “barometer” that continuously fluctuates as a function of 
one’s aspirations and achievements. Cooley (1902) and Mead (1934) emphasized the role of 
social and interpersonal processes in the variation in self-regard. Morse and Gergen (1970) 
argued that the self-concept is highly mutable and that its instability could reflect an aspect of 
personality. More recently, the hierarchical models of self-concept (Fox & Corbin, 1989; 
Marsh & Shavelson, 1985) have offered an interesting framework to understand how daily 
events influence self-esteem. According to these models, global self-esteem constitutes the 
apex of a hierarchical system that is composed of several domain-specific self-concepts (e.g., 
social, physical, cognitive). Each domain can be further differentiated into sub-domains more 
specifically tied to individual experiences. Information is supposed to diffuse in such models 
following top-down, bottom–up, reciprocal and horizontal flows (Marsh & Yeung, 1998). 
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From this point of view, self-esteem should be conceived as the dynamical product of the 
history of a complex system composed of a number of interconnected elements. 
 
     Despite these theoretical foundations for a dynamical appraisal of self-esteem, few 
attempts have been made to really analyze its time-evolutionary properties. Most studies 
focusing on the contextual determinants of self-esteem fluctuations have been performed 
within a static rather than temporal framework. A notable exception was a study by Savin-
Williams and Demo (1983), which applied an autoregressive model to ordered self-ratings 
collected over a one-week period. Despite some methodological limitations, this study 
suggested the presence of different dynamics in individual self-feelings (stable, oscillating, or 
unpredictable). Kernis et al. (1993) recognized that self-esteem might exhibit specific patterns 
of fluctuation that qualitatively differ across individuals and situations. They argued, 
nevertheless, that there was no apparent rationale for making such a claim and no adequate 
means for statistically differentiating among different types of fluctuation. We believe, on the 
contrary, that such a rationale is offered by the recent dynamical perspectives on self-concept, 
and that an approach based on time series analysis would allow a meaningful characterization 
of self-esteem fluctuations (Ninot, Fortes & Delignières, 2001).  
 
     A time series is a collection of observations equally spaced in time, ordered and considered 
sequentially. Time series analyses are generally based on the assumption that the dynamics of 
the series is explained in terms of the current value’s dependence on past values. A classic 
method for analyzing such time series is offered by the autoregressive integrated moving 
average (ARIMA) models (Box & Jenkins, 1976). Theses statistical methods aim at modeling 
time series and predicting some future value as a parametric linear function of the current and 
past values. They are widely used, for example, in econometry for forecasting purposes. They 
can also offer fruitful insights into the dynamics of the series under study and its underlying 
processes. Their use in psychology thus opens an interesting window for the analysis of time-
dependent behavior (Delcor, Cadopi, Delignières & Mesure, 2003; Spray & Newell, 1986).  
 
     Applying these ARIMA procedures to individual self-esteem and physical self time series 
(ranging from 50 to 168 observations), Ninot et al. (2001) and Fortes, Delignières and Ninot 
(2003) showed that a differenced first-order moving average model represented the best fit in 
all cases. This kind of model can be written as: 
 

 yt = yt-1 - θεt-1 + εt (1) 
 

where yt is the response at time t, εt is a random disturbance at time t, and θ is the moving 
average coefficient (0 < θ < 1). This model (also called the simple exponential smoothing 
model) is typical of times series that exhibit noisy fluctuations around a slowly varying mean.  
 
     The first implication of these results is that these time series are not stationary over time. 
They cannot be considered as white noise fluctuations around a stable value, such as a 
personality trait. This model instead suggests that the combination of two opposite processes 
underlies the dynamics of self-esteem: a preservation process, which tends to restore the 
previous value after a disturbance, and an adaptation process, which tends to inflect the series 
in the direction of the perturbation.  
 
     As can be seen in Equation 1, the assessment at time t is characterized by an error term 
(εt), mathematically considered as a random disturbance. More precisely, this error term 
represents the distance between the expected value (determined on the basis on the preceding 
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assessment) and the obtained value. Psychologically, this disturbance should be considered as 
the resultant of all the recent (good or bad) events likely to have affected the assessed 
dimension. The expected value at time t is modeled as the preceding observed value (yt-1) 
minus a fraction of its own disturbance (θεt-1). In other words, the expected value at time t 
tends to absorb the preceding disturbance, in order to restore the previously expected value. 
The amplitude of the correction is given by θ, and the restoration should be complete with a θ 
value close to 1. This correction underlies the preservation process, which limits the influence 
of the perturbations and ensures the stability of the series.  
 
     Nevertheless, θ is generally far from 1. Fortes et al. (2003) reported values ranging from 
0.42 to 0.86, indicating that a residual fraction of the previous disturbance remained in the 
current expected value. In other words, each disturbance tends to leave a persistent trace in the 
dynamics of the series. This adaptation process could account for the frequently reported 
effect of daily events on self-esteem (e.g., Butler, Hokanson & Flynn, 1994; Nezlek & Plesko, 
2001; Rosenberg, 1986). The moving average coefficient θ determines the balance between 
these two opposite processes. Fortes et al. (2003) evidenced a high consistency between the 
coefficients obtained for the different time series of a given participant. This suggested a kind 
of individual disposition related to the stability of self-esteem and its resistance to the 
influence of daily events. As previously stated, the combined effects of these two processes 
lead to a slow evolution in the local mean of the series. The dynamics of the series seem 
organized around a locally stable reference value, a kind of transient trait that evolves 
progressively under the influence of life events.  
 
     Application of the ARIMA procedures provides interesting statistical results and a quite 
reasonable model of the psychological processes underlying the dynamics of self-esteem. 
Nevertheless, this approach tends to focus on short-term correlations in the series and is 
unable to reveal more complex dynamics like, for example, longer-term time dependencies.  
 
     Several theoretical and empirical arguments led us to hypothesize the presence of chaotic 
or fractal processes underlying self-esteem time series. As previously mentioned, most of the 
contemporary models of self-esteem consider this construct as multidimensional (e.g., Harter, 
1982), and this multidimensionality has been reinforced by the introduction of the hierarchical 
models (Marsh & Shavelson, 1985). Marks-Tarlow (1999; 2002) argued that each level of the 
self is formed through interactions and complex feedback loops occurring at various 
physiological, psychological, and social levels. Each level possesses an emerging dynamics 
and is embedded in the next, giving rise to fractal properties such as self-similarity. In the 
same vein, Nowak et al. (2000) considered self-esteem as an emergent property of a complex 
dynamical system, composed of a myriad of specific and interconnected self-thoughts. From 
this point of view, the emergence of the self as a coherent structure and its maintenance in the 
face of incongruent elements can be understood as the result of a process of self-organization 
on the basis of multiple interactions acting within the system. The macroscopic behavior of 
such complex dynamical systems has frequently been proven to exhibit fractal properties (Bak 
& Chen, 1991; Gilden, 2001; West & Shlesinger, 1990). One should also note that in previous 
studies (Fortes et al., 2003; Ninot et al., 2001), the examination of the autocorrelation 
functions of self-esteem series revealed the persistence of significant autocorrelation over a 
wide range of lags (up to 100 lags in some occasions), suggesting the presence of long-term 
time dependencies in the series.  
 
     Another argument relates to the inherent stability of such fractal processes. A number of 
biological and psychological time series were recently proven to possess fractal properties. 
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Recent research evidenced this type of result in continuous uni-manual tapping (Chen, Ding 
& Kelso, 2001), the trajectory of the center of pressure during postural sway (Collins & De 
Luca, 1993; Delignières, Deschamps, Legros & Caillou, 2003), serial reaction time (Gilden, 
Thomton & Mallon, 1995), step duration series during locomotion (Hausdorff, Mitchell, 
Firtion, Peng, Cudkowicz, Wei & Goldberger, 1997) and heartbeat time series (Peng, Mietus, 
Hausdorff, Havlin, Stanley & Goldberger, 1993). When obtained from young and healthy 
organisms, these time series exhibit a very special case of fractal behavior, called 1/f or pink 
noise. ‘1/f noise’ signifies that when the power spectrum of these time series is considered, 
each frequency has power proportional to its period of oscillation. As such, power is 
distributed across the entire spectrum and not concentrated at a certain portion. Consequently, 
fluctuations at one time scale are only loosely correlated with those of another time scale. 
This relative independence of the underlying processes acting at different time scales suggests 
that a localized perturbation at one time scale will not necessarily alter the stability of the 
global system. In other words, 1/f noise renders the system more stable and more adaptive to 
internal and external perturbations (West & Shlesinger, 1990). One can easily understand why 
fractal behavior constitutes an appealing hypothesis for modeling the dynamics of self-esteem 
time series.  
 
     In order to ensure better understanding of the following parts of this article, a deeper and 
more theoretical presentation of fractal processes seems necessary. A good starting point for 
this presentation is Brownian motion, a well-known stochastic process that can be represented 
as the random movement of a single particle along a straight line. Mathematically, Brownian 
motion is the integration of a white Gaussian noise. As such, the most important property of 
Brownian motion is that its successive increments are uncorrelated: each displacement is 
independent of the former, in direction as well as amplitude. Einstein (1905) showed that, on 
average, this kind of motion moves a particle from its origin by a distance that is proportional 
to the square root of the time.  
 
     Mandelbrot and van Ness (1968) defined a family of processes they called fractional 
Brownian motions (fBm). The main difference with ordinary Brownian motion is that in an 
fBm successive increments are correlated. A positive correlation signifies that an increasing 
trend in the past is likely to be followed by an increasing trend in the future. The series is said 
to be persistent. Conversely, a negative correlation signifies that an increasing trend in the 
past is likely to be followed by a decreasing trend. The series is then said to be anti-persistent. 
     Mathematically, an fBm is characterized by the following scaling law:  
 
 <∆x> ∝ ∆tH (2) 
 
which signifies that the expected displacement <∆x> is a power function of the time interval 
(∆t) over which this displacement is observed. H represents the typical scaling exponent of 
the series and can be any real number in the range 0 < H <1. The aims of fractal analysis are 
to check whether this scaling law holds for experimental series and to estimate the scaling 
exponent. Ordinary Brownian motion corresponds to the special case H = 0.5 and constitutes 
the frontier between anti-persistent (H < 0.5) and persistent fBms (H > 0.5).  
 
     Fractional Gaussian noise (fGn) represents another family of fractal processes, defined as 
the series of successive increments in an fBm. Note that fGn and fBm are interconvertible: 
when an fGn is cumulatively summed, the resultant series constitutes an fBm. Each fBm is 
then related to a specific fGn, and both are characterized by the same H exponent. These two 
processes possess fundamentally different properties: fBm is non-stationary with time-
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dependent variance, while fGn is a stationary process with a constant expected mean value 
and constant variance over time. Examples of fBm and fGn corresponding to three values of 
H are presented in Figure 1. The H exponent can be assessed from an fBm series as well as 
from the corresponding fGn, but because of the different properties of these processes, the 
methods of estimation are necessarily different. Thus the determination of the actual nature 
(fBm or fGn) of the time series obtained in a given experiment constitutes a crucial step in 
fractal analysis. 
 

Fractional Brownian motions 

 H = 0.25 H = 0.50 H = 0.75 
 

Fractional Gaussian noises 

 H = 0.25 H = 0.50 H = 0.75 
 
     Figure 1: Graphical examples of fractal time series. The upper graphs represent fractional 
Brownian motions (fBm) and the lower graphs, the corresponding fractional Gaussian noises 
(fGn), for three typical values of the scaling exponent. The upper median graph shows an 
ordinary Brownian motion (H=0.5) with its differenced series (white noise) just below. The 
right and left columns show respectively an anti-persistent fBm (H=0.25) and a persistent 
fBm (H=0.75) and their corresponding fGns.   
 
     The main purpose of the present work was to apply methods of fractal analysis to self-
esteem and physical self time series in order to detect the presence of fractal processes 
underlying their dynamics. We strictly adhered to the methodological principles recently 
developed by Eke et al. (2000), which will be presented in the following section. These 
analyses required the collection of longer time series than those used in previous 
investigations. ARIMA modeling was also performed in order to confirm Fortes et al.’s 
results with longer series and to analyze the relationships between the scaling exponents 
estimated by fractal analyses and the coefficients of ARIMA models.  

Method 

Participants 

     Four adults (2 males and 2 females; mean age = 30.5 years, SD = 8.5) volunteered for this 
study. All were employed and came from middle-class backgrounds. None had 
pharmacologically treated psychiatric disorders or severe medical illnesses and none had 
recently undergone major negative life events that would have affected psychological function 
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over the testing period. All gave informed written consent to participate. They were not paid 
for their participation.  

Questionnaire 

     We used the Physical-Self Inventory (PSI-6), a six-item questionnaire especially devoted 
to repeated measurements, developed and validated by Ninot, Fortes and Delignières (2001). 
The PSI-6 is a short version of a previously validated questionnaire, the PSI-25 (Ninot, 
Delignières & Fortes, 2000), adapted from the Physical Self-Perception Profile (PSPP; Fox & 
Corbin, 1989; Page, Ashford, Fox & Biddle, 1993; Sonstroem, Speliotis & Fava, 1992). PSI-6 
contains one item for global self-esteem (GSE), one item for physical self-worth (PSW), and 
one item for each of the four sub-domains identified by Fox and Corbin (1989): physical 
condition (PC), sport competence (SC), attractive body (AB) and physical strength (PS). This 
questionnaire was proven to reproduce the factorial structure of the corresponding multi-items 
inventories (Fox & Corbin, 1989; Ninot et al., 2000) and to possess the same hierarchical 
properties. Each item is a simple declarative statement, to which participants respond using an 
analog visual scale. The use of such a scale, rather than a traditional Likert scale, was 
motivated by the need to avoid learning effects with repeated measurements and to allow the 
expression of potential variability in the self-assessments (Ninot et al., 2001).  

Procedure 

     Each participant completed the questionnaire using specific software twice a day for 512 
consecutive days, between 7:00 and 9:00 for the first assessment and between 19:00 and 
21:00 for the second. Participants were told to make sure that they could access their 
computers during these temporal windows for the entire experiment including weekends and 
holidays. All participants were able to satisfy this requirement, generally by using a laptop 
computer on holidays. The two temporal windows were defined in order to ensure a quasi-
constant time interval between successive assessments (12 hours). Participants were told to 
systematize their assessment schedule as much as possible (e.g., just before breakfast and just 
before dinner). The software recorded the exact time and date of each assessment, which 
allowed for a posteriori checking of assessment regularity. Deviations from the fixed temporal 
windows remained exceptional and very limited in duration, and were considered as 
negligible with regard to the length of the obtained series. The four participants involved in 
the present study never forgot to complete the questionnaire and provided complete series.  

     The six items were presented successively in random order, and the participants had to 
move a cursor with the mouse along a 15-cm line, anchored by the labels "not at all" at the 
left extremity and "absolutely" at the right. The software then converted the response to a 
score ranging between 0.0 and 10.0 that was proportional to the distance between the cursor 
and the left extremity of the line. Participants were not informed of these numerical scores 
and were not allowed to consult their previous responses. We finally obtained 1024-point time 
series for each dimension and each participant. The duration of the experiment was 
determined in order to optimize the spectral analyses, which work on the basis of series with 
lengths that are powers of 2.  

Descriptive statistics 

     In order to provide a global overview of our data, we computed the mean, range, and 
standard deviation of each series. In addition, to assess the mean local variability of the series, 
we also computed the mean absolute difference between successive values: The series was 
differenced, transformed into absolute values, and the mean of this new series was calculated.  
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ARIMA modeling 

     Each individual series was modeled by means of ARIMA procedures (Box & Jenkins, 
1976). A detailed step-by-step presentation of this method can be found in Fortes et al. 
(2003).  

 
Fractal analyses 
 
     Eke et al. (2001) proposed a very strict and complete procedure for assessing the fractal 
correlation structure in time series. As a first step, they recommended the use of spectral 
analysis to distinguish between fGn and fBm. Spectral analysis works on the basis of the 
periodogram obtained by Fourier analysis. The relation of Mandelbrot and van Ness (1968) 
can be expressed as follows in the frequency domain:  
 

S(f) ∝ 1/f ß (4) 
 

 where f is the frequency and S(f) the correspondent squared amplitude. ß is estimated by 
calculating the negative slope (-ß) of the line relating log (S(f)) to log f. Obtaining a well-
defined linear fit in the double logarithmic plot is an important indication of the presence of 
long-range correlation in the original series. fGn corresponds to ß exponents ranging from –1 
to +1, and fBm to exponents from +1 to +3.  
 
     In the present paper spectral analysis was applied on each individual series. As suggested 
by Chen et al. (2001), each spectrum was calculated after removing the mean of the series and 
normalizing by the standard deviation. Finally the series were linearly detrended before 
spectral analysis.  
 
     A number of methods have been proposed for assessing the scaling exponent of fractal 
series (Eke et al., 2000; Scheppers, van Beek & Bassingthwaighte, 1992). As they work on 
different statistics and exploit different properties of the time series, these methods sometimes 
lead to inconsistent results and the use of a unique method may therefore entail misleading 
interpretations (Rangarajan & Ding, 2000). We decided to apply three different methods on 
our series. Some of these methods were specifically designed for the analysis of fGns, and the 
others for fBms. Following the characterization of our series as fGn or fBm with spectral 
analysis, our strategy was to apply the relevant methods on the original series and to convert 
these series (from fBm to fGn, or inversely) before the application of the other methods 
(Cannon, Percival, Caccia, Raymond & Bassingthwaighte, 1997). We thus had the 
opportunity to obtain three assessments of the scaling exponent, whatever the nature of the 
original series. The three methods are explained in detail in the methodological appendix of 
this article.  
 
     The first method we used was Rescaled Range Analysis (R/S analysis), proposed by Hurst 
(1965) in his work on the annual discharge of the Nile River. R/S analysis is a classic and 
commonly used method (Rangarajan & Ding, 2000) designed for the analysis of fGn. This 
analysis is based on the estimation of the mean range covered by a cumulated version of the 
original series during a given time interval. For a fractal series, this range is a power function, 
with exponent H, of interval length. 
 
     Our second method was Dispersional Analysis, introduced by Bassingthwaighte (1988) 
and applicable only on fGn signals. This method is based on the estimation of the variability 
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of the mean, calculated on non-overlapping intervals of equal length. For a fractal series, this 
variability is a power function, with exponent H-1, of interval length.  
 
     Finally, we used the Scaled Windowed Variance Method, designed to work on fBm signals 
(Cannon, Percival, Caccia, Raymond & Bassingthwaighte, 1997). This method is based on the 
estimation of the standard deviation of the series in non-overlapping intervals of equal length. 
For fractal series, this standard deviation (averaged over all intervals of equal length) is a 
power function, with exponent H, of interval length. 
 
     For all these methods, the fractality of the series is graphically attested to by a linear 
regression in a double-logarithmic plot of the estimated variable (range, variability of the 
mean, or standard deviation) against interval length. The exponent H is estimated from the 
slope of this linear regression.  
 

Results 
 

     Two representative time series (Participant 1, GSE, and Participant 3, PSW) are presented 
in Figure 2. As can be seen, the series appeared generally non-stationary, with marked 
evolutions of the local mean. They were characterized by a kind of roughness, revealing the 
local variability of the successive assessments, and they followed local increasing or 
decreasing trends at diverse and interpenetrated time scales.  
 
     The descriptive statistics are reported in Table 1. Our participants appeared to be a quite 
homogeneous sample, with reasonably high mean levels of self-esteem, except Participant 4 
who presented a lower mean level, just above the middle of the response scale. The means of 
the physical self dimensions were generally slightly lower, but remained in the upper part of 
the scale, expect for Participant 4 who presented quite low mean levels on the PSW, PC and 
PS subscales. Range values indicated that the assessment was not bounded within narrow 
limits, but could present quite distant extreme values. The highest ranges were reported for 
Participant 4, with a maximum of 8.46 for the SC subscale. The analysis of standard 
deviations suggests, nevertheless, that these high ranges were more related to the exceptional 
use of extreme values, rather than to the effective use of a broad bandwidth.  
 
     These data revealed no indication of a relationship between the variability of a series and 
the hierarchical level of the corresponding dimension in the model. A one-way analysis of 
variance with repeated measures revealed no significant difference in standard deviation 
among scales (F5,15 = 2.46, p>0.05). Standard deviation values appeared quite consistent over 
the six scales for each participant: Participant 4 presented the highest variabilities and 
Participant 1 the lowest. Finally, the mean absolute difference values obtained for the first 
three participants were quite similar, between participants and among scales, but were higher 
for Participant 4. Here also, the results did not suggest any effect of the level of the dimension 
in the model on self-assessment variability.  
 
     ARIMA modeling showed that a differenced first-order moving average model adequately 
captured the dynamics of each series. These models were similar to those found in previous 
studies (Fortes et al., 2003; Ninot et al., 2001). The differentiation constant was never 
significant, and the models could thus be expressed following Equation 1. The estimated 
moving average coefficients (θ) are reported in Table 2. The results revealed a high 
consistency in the coefficients obtained for each participant. Participants 1, 3, and 4 were 
characterized by rather high coefficients, ranging from 0.56 to 0.75 and denoting the 
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prevalence of the preservation process in all series. The coefficients were smaller for 
Participant 2, and especially for GSE. This result seemed to indicate for this participant a 
higher sensitivity to disturbance, and particularly at the most global level.  

 
     Figure 2: Two representative examples of experimental time series (upper panel: 
Participant 1, Global Self-Esteem, lower panel: Participant 3, Physical Self-Worth). 
 
     Spectral analysis revealed for each series a straight line in the double logarithmic plot of 
power against frequency (Figure 3), allowing a valid assessment of the ß exponent. We found 
no traces of flattening of the plot in the low-frequency region, as expected for short-memory 
processes (Pressing & Jolley-Rogers, 1997; Chen et al., 2001). These characteristic shapes 
suggest the presence of long-term memory processes underlying the time series. The obtained 
ß exponents are reported in Table 3 and appeared quite similar within and between 
participants. More precisely, ß values appeared close to 1.0 (from 0.95 to 1.39), suggesting 
that the series behaved like 1/f noise. The exponent was in most cases above 1.0, and it 
seemed reasonable to process all series in subsequent analyses as fBms (Eke et al., 2000).  
 
     R/S analysis was then performed on the differenced series and in all cases provided a well-
defined linear relationship in the double logarithmic plot of rescaled range against interval 
length (Figure 4). This graphical result confirmed, in the time domain, the presence of long-
term correlation in the series. We found no traces of the crossover phenomenon (i.e., a 
flattening of the slope for long intervals), which is generally considered as indicative of a 
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bounding effect in the series (Delignières et al., 2003; Liebovitch & Yang, 1997). The present 
data would have been biased by this kind of effect, as responses were constrained in 
amplitude by the length of the analog scale. R/S analysis results showed that this was not the 
case.  
 
 _________________________________________________________________  

  Participant GSE PSW PC SC APP PS 
 _________________________________________________________________  
  1 7.04 6.75 6.24 6.36 7.09 6.13 
 Mean 2 7.30 6.28 5.88 6.01 6.26 5.90 
  3 7.55 7.35 6.74 7.14 7.38 6.82 
  4 5.44 3.43 3.30 6.27 5.73 3.24 
 _________________________________________________________________  
  1 3.25 3.03 2.77 2.47 2.94 2.70 
 Range 2 5.24 4.24 4.72 4.47 3.49 4.15 
  3 3.80 4.01 4.80 3.85 3.96 3.50 
  4 5.83 7.15 7.98 8.46 6.65 6.97 
 _________________________________________________________________  
  1 0.64 0.59 0.52 0.49 0.52 0.54 
 Standard 2 0.56 0.79 0.94 0.76 0.68 0.80 
 Deviation 3 0.54 0.59 0.76 0.70 0.59 0.63 
  4 0.86 1.40 1.36 1.17 0.83 1.35 
 _________________________________________________________________  
  1 0.27 0.26 0.28 0.24 0.25 0.26 
 Mean  2 0.22 0.22 0.23 0.20 0.21 0.23 
 Absolute 3 0.24 0.24 0.36 0.26 0.24 0.31 
 Difference 4 0.57 0.44 0.42 0.55 0.49 0.40 
 _________________________________________________________________  

 

     Table 1: Mean, range, standard deviation, and mean absolute difference of each time 
series. GSE: global self-esteem scale, PSW: physical self-worth, PC: physical condition, SC: 
sport competence, AB: attractive body, and PS: physical strength. 
 

 _________________________________________________________________  
 Participant GSE PSW PC SC APP PS 
 _________________________________________________________________  
 1 0.58 0.65 0.70 0.66 0.63 0.69 
 2 0.35 0.46 0.48 0.50 0.45 0.46 
 3 0.58 0.65 0.75 0.63 0.56 0.68 
 4 0.66 0.56 0.60 0.59 0.64 0.53 
 _________________________________________________________________  
 
     Table 2: Individual moving average coefficients (θ) obtained through ARIMA modeling.  



The fractal dynamics of self-esteem   12 

  

     Figure 3: Example graphical result of the spectral analysis: double logarithmic plot of 
power against frequency (Participant 1, Global Self-Esteem; see Figure 2, upper panel).  
 

 _________________________________________________________________  
 Participant GSE PSW PC SC APP PS 
 _________________________________________________________________  
 1 1.17 1.15 0.95 1.00 1.15 0.95 
 2 1.13 1.39 1.36 1.24 1.27 1.23 
 3 1.09 1.05 0.96 1.34 1.12 1.11 
 4 0.96 1.14 1.02 1.18 0.95 1.05 
 _________________________________________________________________  
 
     Table 3: Individual ß exponents obtained with spectral analysis.  
 
     The individual estimates of H obtained by R/S analysis are reported in Table 4. All these 
values were located in a quite narrow range, between 0.18 and 0.40, with a mean of about 
0.31, suggesting that the series were underlain by an anti-persistent long-range correlation 
process. Nevertheless, this first estimation should be considered with caution, as R/S analysis 
was shown to overestimate the scaling exponent for H < 0.7 (Caccia, Percival, Cannon, 
Raymond & Bassingthwaigthe, 1997). A deeper examination of the exponents revealed their 
homogeneity among scales within each participant. As can be seen, the six exponents for a 
given participant were closely grouped around a mean value (Participant 1: 0.27 +/- 0.04; 
Participant 2: 0.37 +/- 0.02; Participant 3: 0.31 +/- 0.05; Participant 4: 0.28 +/- 0.07). These 
results suggested that the six series shared common fractal properties and that each participant 
was characterized by a specific level of fractality.  
 
     Dispersional analysis was also applied on the differenced series. Well-defined linear slopes 
were obtained for each double logarithmic plot of standard deviation against interval length. 
A plot example is shown in Figure 4. These graphical results confirmed those obtained by R/S 
analysis and evidenced the presence of long-range correlation in the time series. The estimates 
of H obtained by Dispersional analysis are reported in Table 4. These exponents were 
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generally slightly lower than those obtained with R/S analysis (Participant 1: 0.19 +/- 0.04; 
Participant 2: 0.29 +/- 0.14; Participant 3: 0.20 +/- 0.08; Participant 4: 0.11 +/- 0.05). Note, 
however, that for the five physical self series of Participant 2 we obtained estimates similar to 
those from R/S analysis (0.35 +/- 0.04): Dispersional analysis gave a very low estimate for 
GSE (0.02 vs 0.34 for R/S analysis) but similar results for the remaining dimensions. The 
overestimation with R/S analysis is stronger for low values of H (Caccia et al., 1997), and one 
could suppose that in the present case R/S analysis overestimated the exponents of 
Participants 1, 3 and 4, but not those of Participant 2.  
 
 ___________________________________________________________________  
 Method Participant GSE PSW PC SC APP PS 
 ___________________________________________________________________  
  1 0.33 0.27 0.21 0.26 0.29 0.26 
 R/S 2 0.34 0.36 0.38 0.38 0.36 0.40 
 analysis 3 0.28 0.28 0.31 0.36 0.38 0.25 
  4 0.18 0.28 0.33 0.36 0.24 0.31 
 ___________________________________________________________________  
  1 0.26 0.25 0.14 0.15 0.25 0.12 
 Disp 2 0.02 0.34 0.38 0.36 0.28 0.36 
 analysis 3 0.19 0.15 0.18 0.36 0.12 0.21 
  4 0.11 0.14 0.11 0.17 0.02 0.10 
 ___________________________________________________________________  
  1 0.22 0.21 0.16 0.19 0.20 0.19 
 ldSWV 2 0.16 0.35 0.39 0.36 0.30 0.36 
  3 0.10 0.10 0.11 0.13 0.13 0.12 
  4 0.10 0.15 0.15 0.20 0.15 0.16 
 ___________________________________________________________________  
 
     Table 4: Individual H exponents obtained with R/S analysis, Dispersional analysis (Disp) 
and the linear detrended Scaled Windowed Variance method (ldSWV).  
 
     The Scaled Windowed Variance method was applied on the raw series. The double 
logarithmic plot of mean standard deviation against interval length gave acceptable linear fits. 
An example plot is shown in Figure 4. The obtained estimates of H are reported in Table 4. 
As can be seen, these exponents were close to those obtained with Dispersional analysis 
(Participant 1: 0.19 +/- 0.02; Participant 2: 0.32 +/- 0.08; Participant 3: 0.11 +/- 0.02; 
Participant 4: 0.15 +/- 0.03). The exponent obtained for the GSE series of Participant 2 (0.16) 
was higher than that of Dispersional analysis, but lower than that of R/S analysis. For the five 
remaining dimensions, the results of the preceding analyses were confirmed, with similar 
standard deviation (0.35 +/- 0.02). One should also note that the exponents of Participant 3 
were lower than those obtained with Dispersional analysis (mean value 0.11 vs 0.20).  
 
     Finally, Table 5 shows the correlation matrix between the coefficients and exponents 
obtained in the preceding analyses. All estimates of H presented significant correlations with 
ß. The three estimates of H were obviously highly intercorrelated. Finally, the moving 
average coefficients θ, obtained through ARIMA procedures, presented significant negative 
correlations with ß and the H estimates obtained from R/S analysis and the Scaled Windowed 
Variance method.  
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 ___________________________________________________________  
 β H(R/S) H(Disp) H(ldSWV) 
 ___________________________________________________________  

θ -.64** -.67** -.25 
NS -.60** 

β   .75**  .81**  .69** 
H (R/S)    .56**  .61** 
H (Disp)     .71** 

 ___________________________________________________________  
 (NS: non-significant; *: p<.05; ** p<.01) 
 
     Table 5: Correlation matrix between the moving average coefficients θ, the ß exponents 
and the H estimates obtained with R/S analysis, Dispersional analysis (Disp), and the linear 
detrended Scaled Windowed Variance method (ldSWV).  
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     Figure 4: Example graphical results. Panel a: R/S analysis, double logarithmic plot of
averaged rescaled range against interval length; panel b: Dispersional analysis, double
logarithmic plot of the standard deviation of mean estimates against interval length; panel
c: linear detrended Scaled Windowed Variance method: double logarithmic plot of the
averaged standard deviation against interval length. Data from Participant 1, Global Self-
Esteem (see Figure 2, upper panel). 
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Discussion 

 
     The aim of this paper was to study the dynamics of individual self-esteem and physical self 
time series in adults. We analyzed a unique set of data obtained through repeated self-
assessments over a period of 512 consecutive days, with two assessments per day. Our main 
goals were to apply fractal analyses to these series in order to go beyond the classic Gaussian 
approaches and to assess the temporal structure of their variability.  
 
     We are aware that our approach may appear intriguing for most social psychologists. Self-
esteem and similar constructs are generally approached through nomothetic perspectives, in 
the attempt to infer general models of psychological functioning from the average behavior of 
a number of individuals in selected situations. The present work was based on only four 
participants and one might well wonder if general knowledge can be obtained from such a 
restricted sample. The use of time series and the associated analysis methods opens a new 
window on psychological functioning and constitutes an innovative means of understanding 
its dynamics. Nevertheless, the collection of such extended series represents a difficult 
challenge. Because these series are processed individually, their quality and genuineness are 
essential. The aim of such a dynamical approach is less to derive an epistemic model by 
averaging a number of observed behaviors than to evidence that individual behaviors share 
common dynamics, despite superficial differences. From this perspective, the richness of the 
individual data sets that can reveal the dynamics is more crucial than the number of 
participants involved in the experiment. Researchers in many fields, for example in the 
dynamical approach to motor control and learning, have also adopted this experimental 
strategy (e.g., Nourrit, Delignières, Caillou, Deschamps & Lauriot, 2003; Sparrow & Irizarry-
Lopez, 1987; Zanone & Kelso, 1992).  
 
     An analysis of the events or experiences that caused the waxing and waning of self-esteem 
might have been interesting and, indeed, our participants were requested to report the daily 
events they considered important. Some typical effects were evidenced, such as a systematic 
devalorization in self-esteem during long periods of vacation (see, for example, in Figure 2, 
observations 300 to 350 or 520 to 600). Along the same lines, a recent experiment showed the 
positive impact of a three-week rehabilitation program on self-esteem dynamics in patients 
suffering from chronic obstructive pulmonary disease (Ninot et al., 2002). The focus of the 
present work, however, was on the global dynamics of self-esteem and physical self, not on 
their responses to particular events. These responses can differ in amplitude, according to the 
importance or the duration of each event, but their nature remains invariant and constitutes the 
core of the dynamical models derived for the series.  
 
     The main result of the present paper was the uncovering of long-range, fractal correlations 
in self-esteem and physical self time series. The fractal behavior of the series was proven 
without ambiguity, with consistent results obtained by different methods, one in the frequency 
domain, and three in the time domain. Rangarajan and Ding (2000) showed how the use of a 
single method in fractal analysis could lead to misleading results and false interpretations. 
Here each method gave graphical evidence for one of the typical power functions presented in 
the method section and detailed in the appendix.  
 
     The estimation of scaling exponents gave more inconsistent results. The best agreement 
between methods was obtained for the highest exponents, and especially for the five 
dimensions of physical self for Participant 2. R/S analysis, even in its detrended version, 
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seemed to overestimate the lower exponents and, for example, was unable to differentiate 
GSE from the other dimensions for Participant 2. All the other methods, including spectral 
analysis (see Table 3), detected this difference in fractality between the apex level and the 
other dimensions. Dispersional analysis was selected by Caccia et al. (1997) as the most 
relevant method for assessing the scaling exponent in fGn. The exponents obtained by this 
method seemed generally consistent with the ß exponents of spectral analysis. Both methods 
agreed for detecting a particularly high exponent for the SC dimension of Participant 3, a 
feature that was ignored by the other methods. The Dispersional analysis estimate for GSE of 
Participant 2 nevertheless appeared rather low, in relation to its ß counterpart.  
 
     The Scaled Windowed Variance method was the most relevant method for our fBm series 
(Cannon et al., 1997). The results obtained with this method were quite consistent with those 
of Dispersional analysis, despite some lower values for Participant 3.  
 
     These results give a good illustration of the interest of an integrated approach in fractal 
analysis by the joint use of different methods (Rangarajan & Ding, 2000), not only for 
detecting the presence of fractal processes, but also for the estimation of the scaling 
exponents. Working on the basis of different statistics and exploiting distinct facets of fractal 
theory, these methods can selectively produce inconsistent results. An integrated approach 
allows a more accurate assessment of the exponents, which is essential for experimental 
protocols including group means comparisons. We confirm in the present paper the quality of 
the two methods selected by Eke et al. (2000) for estimating scaling exponents. The results 
demonstrate the interest of complementary use of these two methods, i.e., applying 
Dispersional analysis on fGn and the Scaled Windowed Variance method on the 
corresponding fBm (Cannon et al., 1997).  
 
     The ARIMA modeling confirmed previous results (Fortes et al., 2003; Ninot et al., 2001), 
with the uncovering of moving average models for each individual series. Moreover, the 
moving average coefficients appeared to be negatively related to H estimates. This suggests 
that 1/f noise and the moving average model possess similar properties, characterized by a 
subtle balance between the preservation of a reference value and an adaptation to events. The 
present results show that this balance is not simply achieved over the short term, as suggested 
by the ARIMA models, but occurs at multiple time scales, in a self-similar way. We assume 
that the moving average model, which implies a systematic correction of disturbances, mimics 
over the short term the fractal anti-persistent correlation that underlies the series. In other 
words, low moving average coefficients should be related to weakly anti-correlated series, 
close to Brownian motion (with H close to 0.5), and higher coefficients should correspond to 
series closer to 1/f noise, with lower H exponents. This relationship between moving average 
coefficients and fractal exponents could be of practical importance in applied settings, as 
ARIMA procedures can work with relatively short series. Note, however, that we failed to 
demonstrate this relationship with Dispersional analysis exponents. This result is quite 
disappointing because of the supposed quality of Dispersional analysis estimates. 
 
     The uncovering of long-range, fractal correlation in self-esteem and physical self series 
leads to important theoretical considerations. Such fractal behavior at a systemic level is 
generally considered to be the expected outcome of a complex, dynamical system, composed 
of multiple interacting elements (West & Shlesinger, 1990). Recently a number of 
mechanisms were advocated to explain the emergence of such processes. According to Bak 
and Chen (1991), long-range correlations constitute the typical signature of complex systems 
in critical self-organized state. Hausdorff and Peng (1996) showed that multi-scaled 
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randomness would give rise to such behavior under some conditions. All these propositions 
share the idea of the presence of many interacting components acting on different time scales. 
Our results represent an interesting support for the model proposed by Nowak et al. (2000), 
which considered self-esteem as a self-organized dynamical system.  
 
     Interestingly, this fractal behavior was discovered for each dimension in the model with 
similar scaling exponents. On the basis of the principles underlying the hierarchical model of 
physical self (Fox & Corbin, 1989), one might conceive of self-esteem as more complex (i.e., 
integrating a greater number of elements) than the other dimensions. Our results suggest that 
the sub-domains behave much as the higher and more global levels and should also be 
considered as complex systems. This result is consistent with the basic principles of self-
similarity, with each level in the self appearing to contain similar dynamics while being 
embedded in the next level (Marks-Tarlow, 1999). It would be interesting, however, to check 
whether a time series obtained from the self-assessment of perceived competence in a single 
task exhibits similar long-term memory or presents another kind of temporal structure. 
 
     The exponents obtained for each series allowed us to classify them as close to 1/f noise. As 
stated previously, 1/f noise represents a compromise between white noise and Brownian 
motion. More precisely, 1/f noise represents a compromise between the absolute preservation 
of the mean achieved by white noise (which is characterized by a strictly stationary series, 
with random fluctuations around a stable mean) and the absolute adaptation of Brownian 
motion (defined as the cumulative sum of a series of random shocks).  
 
     These results have important implications concerning the way one conceives of stability 
and instability in self-esteem. As explained in the introduction, 1/f noise possesses an intrinsic 
stability, due to the relative independence of the underlying processes acting at different time 
scales. The system is thus more adaptive to endogenous and exogenous perturbations. 1/f 
noise has been discovered in a number of biological systems. This “optimal” fractality 
appears as the typical signature of young, healthy, and adaptive systems. On the contrary, 
certain diseases seem associated with a disruption of this “optimal” fractality (West & 
Shlesinger, 1990). Hausdorff et al. (1997) showed that fluctuations in the duration of the gait 
cycle display 1/f behavior in healthy young adults. This fractal dynamics was systematically 
altered in elderly subjects and patients with Huntington’s disease. In these cases, the 
fluctuations appeared more random and closer to a white noise process. In the same vein, 
Peng, Havlin, Stanley and Goldberger (1995) analyzed beat-to-beat fluctuations in heart rate 
and showed that congestive heart failure led to an alteration in the 1/f fractality observed for 
healthy subjects. In these two experiments the amplitude of the alteration was proportional to 
the severity of the disease. 
 
     The participants of the present study can be considered as healthy, physically and 
professionally active adults, and the 1/f behavior we evidenced can be conceived as the typical 
intrinsic dynamics of global self-esteem and physical self for such individuals. According to 
Marks-Tarlow (1999), psychological health resides at the edge of chaos, a transition zone 
between predictable order and unpredictable chaos. Within this zone, systems possess enough 
stability to maintain consistent functioning but sufficient randomness to ensure adaptability 
and creativity. Disabled systems behave away from this edge, in the direction of unpredictable 
chaos, as in hysterical patients, or in the opposite direction of deterministic order, as in 
obsessive-compulsive patients. Marks-Tarlow (1999) predicts that for such patients, specific 
alterations in fractality should be observed, in the direction of white noise in the first case, and 
in the direction of Brownian motion in the second. Gottschalk, Bauer and Whybrow (1995) 
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evidenced such results in the related domain of mood variation. They analyzed long-term 
daily mood records in patients with bipolar disorder and normal subjects and observed in both 
groups a 1/f-type noise in the collected series. ß exponents were significantly higher in the 
bipolar patients, suggesting that self-rated mood in such patients was more organized and 
characterized by a loss of complexity. In the same vein, Ninot, Delignières and Varray (2003) 
recently showed that the variability of self-esteem and physical self time series was higher 
and more random in patients suffering from chronic obstructive pulmonary disease than in 
healthy participants. 
 
     The application of fractal analysis to self-esteem series constitutes in our opinion only a 
first step in the characterization of their nonlinear properties. One of the most important 
results of the present study is the demonstration of the non-stationary nature of self-esteem 
over time. Such non-stationary processes can be characterized by a number of features, 
including changes in the dynamics or bifurcations. Such phenomena would be particularly 
expected in depressed or highly anxious subjects, but we saw even in the present data that 
specific episodes such as vacations caused local changes in self-esteem dynamics in healthy 
individuals.  
 
     Some methods have been specifically designed for the analysis of non-stationary series, 
and these would be useful to complement the present approach. Time-frequency methods, for 
example, were delineated to yield evolving spectral representation of non-stationary signals 
whose dynamics are suspected to change over time (see, for example, Scumann, Redfern, 
Furnam, El-Jaroudi & Chaparro, 1995). Recurrence plot analysis is a very appealing recent 
method that would allow the identification of transition points in non-stationary data sets or 
the detection of bifurcations (see, for example, Riley, Balasubramanian and Turey, 1999). In 
addition, this method permits a quantification of the determinist structure in the series. 
Finally, one can consider the application of various nonlinear regression models on the series 
and comparisons with their linear counterparts (Guastello, Johnson & Rieke, 1999; Warren, 
Hawkins & Sprott, 2003). The application of these methods is beyond the scope of the present 
paper but should be the object of future research.  
 
     Finally, our approach considered the collected series separately and neglected to examine 
their interactions. The assessed dimensions are conceived of as the interconnected 
components of a hierarchically organized system, but the way one dimension influences its 
neighbors in the model remains an open question. Diverse hypotheses have been proposed, 
suggesting that these processes of influence could act following a top-down (Brown, 1993) or 
conversely a bottom-up direction (Shavelson & Bolus, 1982). The dynamical systems 
approach to self-concept suggests a more complex functioning, based on nonlinear couplings 
between dimensions (Marks-Tarlow, 1999), and assumes that the processes of influence 
between neighbors in the model may be variable over time in terms of both direction and 
strength. The set of time series collected for the present study could provide the empirical 
material necessary for testing this hypothesis, and our current research aims at evidencing 
such nonlinear coupling phenomena by means of windowed cross-correlational analyses, a 
method for characterizing the association between variables when the assumption of 
stationarity over time may not be warranted (Boker, Xu, Rotondo & King, 2002).   
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Conclusion 
 

     This study showed that self-esteem and physical self time series were underlain by a 
fractal process close to 1/f noise. This result provides strong support for the conception of the 
self as a complex dynamical system (Nowak et al., 2000). This fractal behavior seems to 
reflect the intrinsic dynamics of global self-esteem and physical self of healthy adults, and its 
inherent properties may explain some macroscopic, commonly recognized features, such as 
stability, preservation, and adaptation. 
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Appendix 
 
     Consider an fBm as y(t), and the corresponding fGn as x(t). x(t) represents the series of 
successive increments in y(t), and y(t) the cumulative sum of x(t).  
 
Rescaled Range analysis 
 
      The x(t) series is divided into non-overlapping intervals of length n. Within each interval, 
an integrated series X(t, n) is computed:  
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     where <x>n is the local average of the n data. In the classical version of R/S analysis, the 
range R is computed for each interval as the difference between the maximum and the 
minimum integrated data X(t, n).  
 
 R = max X(t, n) – min X(t, n) (7) 
 1 ≤ t ≤ n 1 ≤ t ≤ n 

 
     In the present paper, we used an improved version, R/S-detrended, where a straight line 
connecting the end points of each interval is subtracted from each point of the cumulative 
sums X(t, n) before the calculation of the local range. In both methods, the range is then 
divided for normalization by the local standard deviation (S) of the original series x(t). This 
computation is repeated over all possible interval lengths (in practice, the shortest length is 
around 10, and the largest (N-1)/2, giving two adjacent intervals). Finally the rescaled ranges 
R/S are averaged for each interval length n. SR/  is related to n by a power law:  
 

SR/  ∝ nH (8) 
 
     H is expressed as the slope of the double logarithmic plot of SR/ as a function of n. R/S 
analysis is known to overestimate H for series with H < 0.7 and conversely to underestimate 
H for H > 0.7. Nevertheless, these biases are reduced for the detrended version of the R/S 
analysis (Caccia et al., 1997).  
 
Dispersional analysis 
 
     The x(t) series is divided into non-overlapping intervals of length n. The mean of each 
interval is computed, and then the standard deviation (SD) of these local means, for a given 
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length n. These computations are repeated over all possible interval lengths. SD is related to n 
by a power law:  
 

SD ∝ nH-1 (9) 
 
     The quantity (H-1) is expressed as the slope of the double logarithmic plot of SD as a 
function of n. Obviously, the SDs calculated from the highest values of n tend to fall below 
the regression line and bias the estimate. Caccia et al. (1997) suggested ignoring the measures 
obtained from the longest intervals. In the present paper, we only considered the standard 
deviations obtained on the means of at least six non-overlapping intervals. Caccia et al. (1997) 
showed that Dispersional analysis gives reliable estimates of the H exponent for fGn signals. 
Estimates of H obtained from Dispersional analysis have lower bias and variance than those 
from classical R/S analysis.  
 
Scaled Windowed Variance method 
 
     The y(t) series is divided into non-overlapping intervals of length n. The standard deviation 
of the points is then calculated within each interval using the formula: 
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     where y  is the average within each interval. Finally the average standard deviation ( SD ) 
of all intervals of length n is computed. This computation is repeated over all possible interval 
lengths. SD  is related to n by a power law:  
 

SD  ∝ nH (11) 
 
     H is expressed as the slope of the double logarithmic plot of SD  as a function of n. 
Cannon et al. (1997) showed that a detrending of the series within each interval before the 
calculation of the standard deviation provided better estimates of H, especially with short 
series. In this paper we used the linear detrended Scaled Windowed Variance method: a linear 
regression was computed for the points of each considered interval, and the standard deviation 
(SD) was calculated on the residuals of this regression.  
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